The mean of all the elements in the input, must be floating point or complex type
import mir.ndslice.slice: sliced; assert(mean([1.0, 2, 3]) == 2); assert(mean([1.0 + 3i, 2, 3]) == 2 + 1i); assert(mean!float([0, 1, 2, 3, 4, 5].sliced(3, 2)) == 2.5); static assert(is(typeof(mean!float([1, 2, 3])) == float));
Mean of vector
import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.mean == 29.25 / 12);
Mean of matrix
import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.mean == 29.25 / 12);
Column mean of matrix
import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; import mir.algorithm.iteration: all; import mir.math.common: approxEqual; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [1, 4.25, 3.25, 1.5, 2.5, 2.125]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!mean.all!approxEqual(result)); assert(x.alongDim!0.map!mean.all!approxEqual(result)); // FIXME // Without using map, computes the mean of the whole slice // assert(x.byDim!1.mean == x.sliced.mean); // assert(x.alongDim!0.mean == x.sliced.mean);
Can also set algorithm or output type
import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set sum algorithm or output type auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; assert(x.mean!"kbn" == 20_000 / 4); assert(x.mean!"kb2" == 20_000 / 4); assert(x.mean!"precise" == 20_000 / 4); assert(x.mean!(double, "precise") == 20_000.0 / 4); auto y = uint.max.repeat(3); assert(y.mean!ulong == 12884901885 / 3);
For integral slices, pass output type as template parameter to ensure output type is correct.
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.mean; assert(y.approxEqual(29.0 / 12, 1.0e-10)); static assert(is(typeof(y) == double)); assert(x.mean!float.approxEqual(29f / 12, 1.0e-10));
Mean works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [1.0 + 2i, 2 + 3i, 3 + 4i, 4 + 5i].sliced; assert(x.mean.approxEqual(2.5 + 3.5i));
Compute mean tensors along specified dimention of tensors
import mir.ndslice: alongDim, iota, as, map; /++ [[0,1,2], [3,4,5]] +/ auto x = iota(2, 3).as!double; assert(x.mean == (5.0 / 2.0)); auto m0 = [(0.0+3.0)/2.0, (1.0+4.0)/2.0, (2.0+5.0)/2.0]; assert(x.alongDim!0.map!mean == m0); assert(x.alongDim!(-2).map!mean == m0); auto m1 = [(0.0+1.0+2.0)/3.0, (3.0+4.0+5.0)/3.0]; assert(x.alongDim!1.map!mean == m1); assert(x.alongDim!(-1).map!mean == m1); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!mean == iota([3, 4, 5], 3 * 4 * 5 / 2));
Arbitrary mean
assert(mean(1.0, 2, 3) == 2); assert(mean!float(1, 2, 3) == 2);
Computes the mean of the input.
By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.